Whole-genome genotyping of haplotype tag single nucleotide polymorphisms.
نویسندگان
چکیده
The International HapMap Consortium recently completed genotyping over 3.8 million single nucleotide polymorphisms (SNPs) in three major populations, and the results of studying patterns of linkage disequilibrium indicate that characterization of 300,000-500,000 tag SNPs is sufficient to provide good genomic coverage for linkage-disequilibrium-based association studies in many populations. These whole-genome association studies will be used to dissect the genetics of complex diseases and pharmacogenomic drug responses. As such, the development of a cost-effective genotyping platform that can assay hundred of thousands of SNPs across thousands of samples is essential. In this review, we describe the development of a whole-genome genotyping (WGG) assay that enables unconstrained SNP selection and effectively unlimited multiplexing from a single sample preparation. The development of WGG in concert with high-density BeadChips has enabled the creation of three different high-density SNP genotyping BeadChips: the Sentrix Human-1 Genotyping BeadChip containing over 109,000 exon-centric SNPs; the HumanHap300 BeadChip containing over 317,000 tag SNPs, and the HumanHap550 Beadchip containing over 550,000 tag SNPs.
منابع مشابه
Haplotype Block Partitioning and tagSNP Selection under the Perfect Phylogeny Model
Single Nucleotide Polymorphisms (SNPs) are the most usual form of polymorphism in human genome.Analyses of genetic variations have revealed that individual genomes share common SNP-haplotypes. Theparticular pattern of these common variations forms a block-like structure on human genome. In this work,we develop a new method based on the Perfect Phylogeny Model to identify haplo...
متن کاملHaplotag: Software for Haplotype-Based Genotyping-by-Sequencing Analysis.
Genotyping-by-sequencing (GBS), and related methods, are based on high-throughput short-read sequencing of genomic complexity reductions followed by discovery of single nucleotide polymorphisms (SNPs) within sequence tags. This provides a powerful and economical approach to whole-genome genotyping, facilitating applications in genomics, diversity analysis, and molecular breeding. However, due t...
متن کاملHaplotype block partition with limited resources and applications to human chromosome 21 haplotype data.
Recent studies have shown that the human genome has a haplotype block structure such that it can be decomposed into large blocks with high linkage disequilibrium (LD) and relatively limited haplotype diversity, separated by short regions of low LD. One of the practical implications of this observation is that only a small fraction of all the single-nucleotide polymorphisms (SNPs) (referred as "...
متن کاملLinkage disequilibrium grouping of single nucleotide polymorphisms (SNPs) reflecting haplotype phylogeny for efficient selection of tag SNPs.
Single nucleotide polymorphisms (SNPs) have been proposed to be grouped into haplotype blocks harboring a limited number of haplotypes. Within each block, the portion of haplotypes is expected to be tagged by a selected subset of SNPs; however, none of the proposed selection algorithms have been definitive. To address this issue, we developed a tag SNP selection algorithm based on grouping of S...
متن کاملDefining haplotype blocks and tag single-nucleotide polymorphisms in the human genome.
Recent studies suggest that the genome is organized into blocks of haplotypes, and efforts to create a genome-wide haplotype map of single-nucleotide polymorphisms (SNPs) are already underway. Haplotype blocks are defined algorithmically and to date several algorithms have been proposed. However, little is known about their relative performance in real data or about the impact of allele frequen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pharmacogenomics
دوره 7 4 شماره
صفحات -
تاریخ انتشار 2006